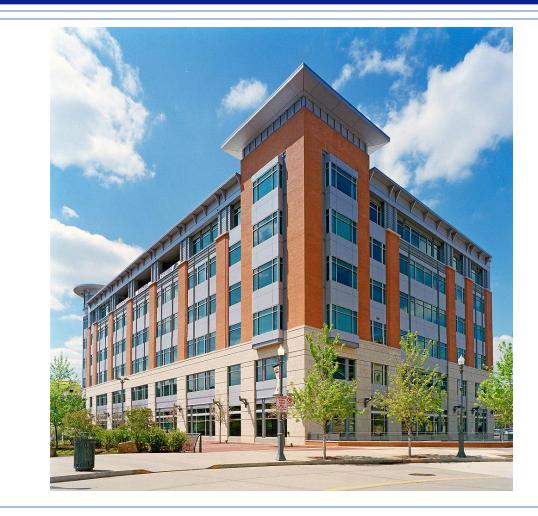


North Shore Equitable Building

Stephan Northrop

North Shore Equitable Buildi

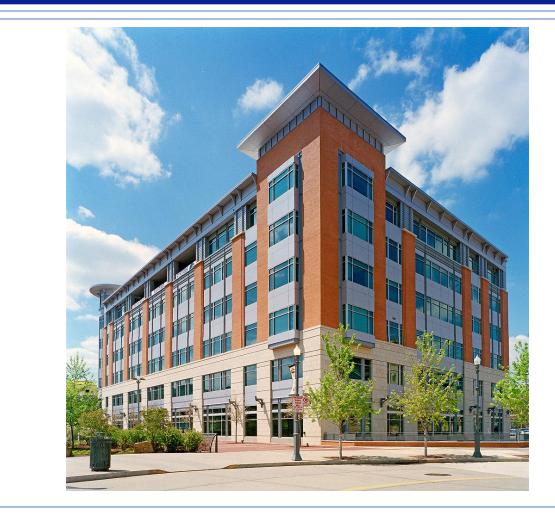

Presentation Outline

Building Introduction Existing Building Information Problem Statement Proposed Solution Structural Depth

- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment
- Acoustic Analysis Breadth

Conclusion

Acknowledgements & Questions


Building Introduction		
Existing Building Information		
Problem Statement	•	Lo
Proposed Solution	•	0.
Structural Depth	•	Ov
Codes & Loads	•	00
Proposed Gravity System	•	De
Proposed Lateral System		
Foundation Assessment	•	Da
Acoustic Analysis Breadth	•	Сс
Conclusion	•	Siz
Acknowledgements & Questions		012

North Shore Equitable Buildi

General Building Information

- Pittsburgh's North Shore Location:
- Continental Real-Estate Owner:
- Occupancy Type: Low rise commercial
- Delivery method: Design build
- Dates of construction: Oct '03 Dec '04
- \$70 million Cost:
- 6 stories, 180,000 sq. Ft. Size:
 - 87'1" building height

Building Introduction

Existing Building Information

Problem Statement

Proposed Solution

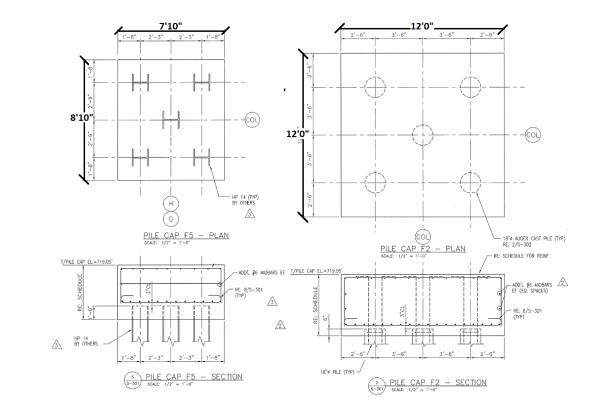
Structural Depth

- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth

Conclusion

Acknowledgements & Questions



North Shore Equitable Build

Existing Structural System

Foundation

- 5 ¹/₂" Slab on grade
- 18" Auger Cast Piles
- Steel H piles
- Light rail transit line accommodation

Building Introduction

Existing Building Information

Problem Statement

Proposed Solution

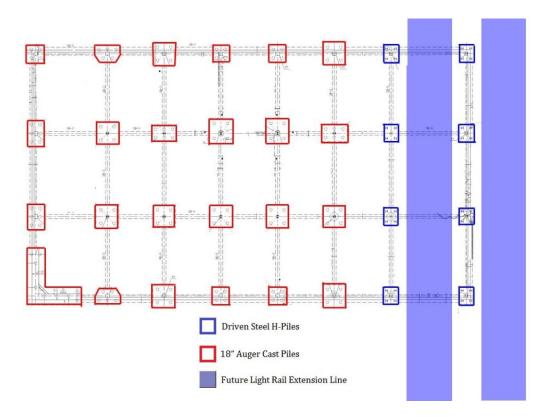
Structural Depth

- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth

Conclusion

Acknowledgements & Questions



North Shore Equitable Buildi

Existing Structural System

Foundation

- 5 ¹/₂" Slab on grade
- 18" Auger Cast Piles
- Steel H piles
- Light rail transit line accommodation

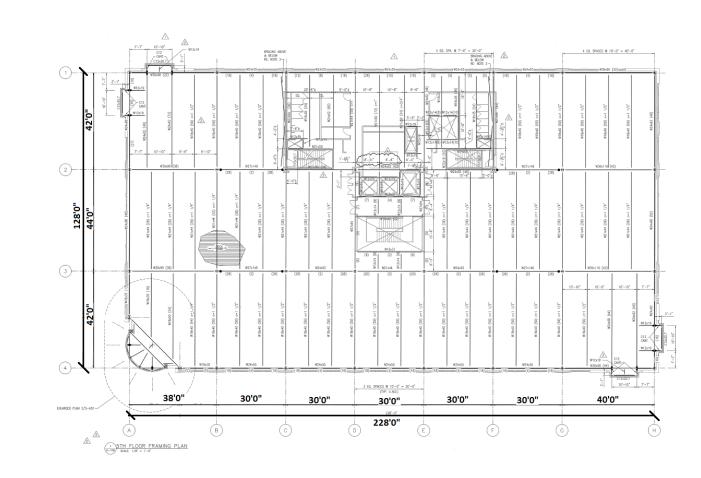
Existing Building Information **Problem Statement Proposed Solution Structural Depth** Codes & Loads Proposed Gravity System Proposed Lateral System Foundation Assessment Acoustic Analysis Breadth Conclusion Acknowledgements & Questions

Building Introduction

- Steel wide flange beams and girders

- N/S Direction: Braced frames

Stephan Northrop


North Shore Equitable Build

Existing Structural System

General Floor Framing

Gravity System

- 5 ¹/₂" Lightweight composite floor slab
- W14 steel columns
- Lateral System
- E/W Direction: Steel moment frames

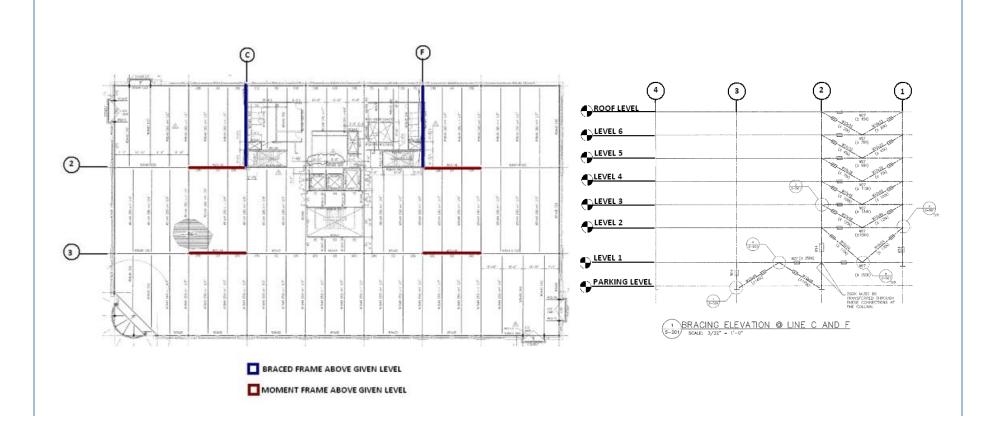
Existing Building Information **Problem Statement Proposed Solution Structural Depth** Codes & Loads Proposed Gravity System Proposed Lateral System Foundation Assessment Acoustic Analysis Breadth Conclusion Acknowledgements & Questions

Building Introduction

- Steel wide flange beams and girders

- N/S Direction: Braced frames

Stephan Northrop


North Shore Equitable Buildi

Existing Structural System

General Floor Framing

Gravity System

- 5 ¹/₂" Lightweight composite floor slab
- W14 steel columns
- Lateral System
- E/W Direction: Steel moment frames

Building Introduction Existing Building Information

Problem Statement

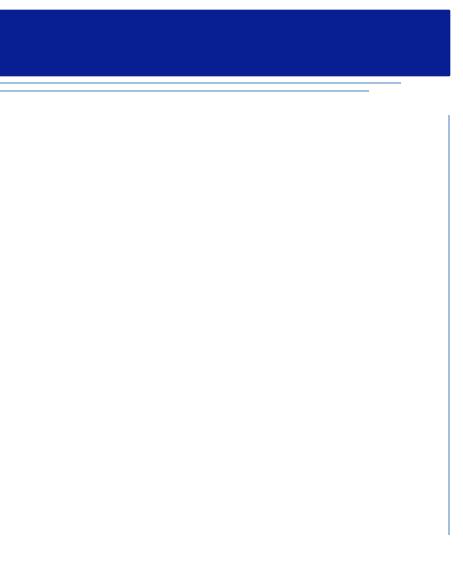
Proposed Solution Structural Depth

- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth

Conclusion

Acknowledgements & Questions



North Shore Equitable Buildin

Problem Statement

- Subgrade light rail transit line poses vibration and
- noise control issues
- Large bay sizes are required
- Project Goals
- Improve noise control
- Maintain existing grid layout

Building Introduction Existing Building Information Problem Statement Proposed Solution Structural Depth Codes & Loads Proposed Gravity System

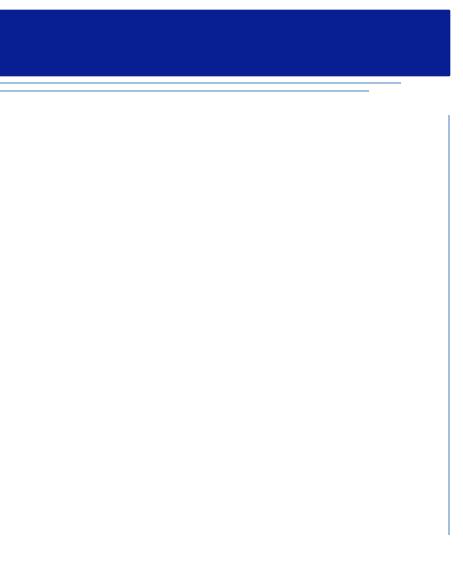
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth

Conclusion

Acknowledgements & Questions

St



North Shore Equitable Building

Proposed Solution

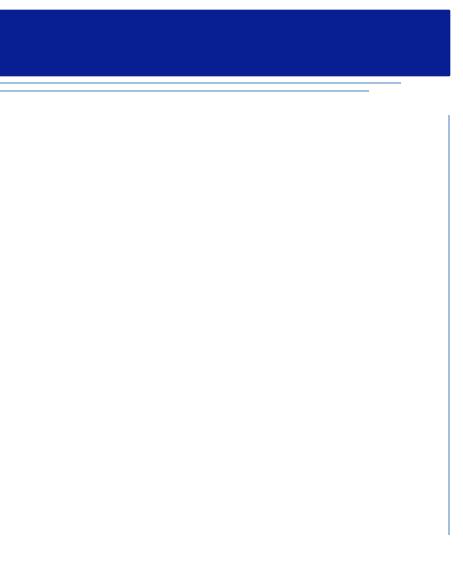
- Structural Depth Study
- Redesign the structure as a one way concrete pan
 - joist and beam system
- Investigate the impact on the building foundation
- Acoustic Analysis
- Investigate the noise reduction benefits of a
- concrete structure
- <u>Cost & Schedule Analysis (not presented)</u>
- Investigate the cost and scheduling implications of
- a concrete structure

Building Introduction Existing Building Information Problem Statement Proposed Solution Structural Depth • Codes & Loads Proposed Gravity System Proposed Lateral System • Foundation Assessment Acoustic Analysis Breadth Conclusion Acknowledgements & Questions

- Ability to accommodate long spans
- **Decreased floor depth**

Stephan Northrop

North Shore Equitable Building


Proposed Solution

One Way Concrete Pan Joist and Beam System

Inherent noise & vibration reduction

Possibility of decreased construction costs

Building Introduction
Existing Building Information
Problem Statement
Proposed Solution

Structural Depth

- <u>Codes & Loads</u>
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth

Conclusion

Acknowledgements & Questions

E	2

Stephan Northrop

North Shore Equitable Buildi

Codes & Loads

- Existing Design
- 100 PSF live loads at all levels
- AISC 9th edition, ACI 318-95, and ASCE 7-95 used
 - for design

<u>Redesigned Structure</u>

- 80 PSF live load at all upper levels
- 100 PSF live load at ground level
- ACI 318-08 and ASCE 7-05 used for redesign

Live Loads			
Load Type	As Designed (psf)	Per ASCE 7-05 (psf)	Redesign (psf)
Floor Live Loads			
Office	100	50	80
Corridors	100	100 (first level)	100 (first level)
		80 (upper levels)	80 (upper levels)
Mechanical	150	(not provided)	150
Stairs	100	100	100
Retail	100	100	100
Garage Live Load	50	40	40
Roof Live Load	20 (min)	20	20

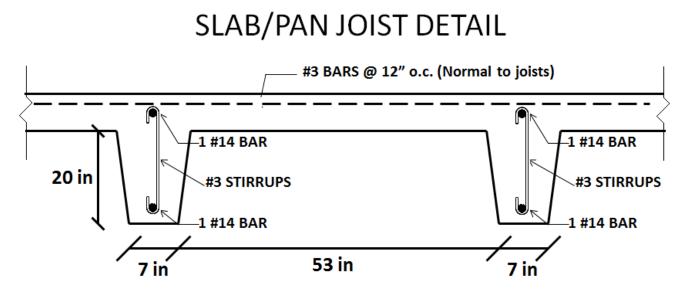
Building Introduction	
Existing Building Information	L
Problem Statement	
Proposed Solution	•
Structural Depth	•
Codes & Loads	
<u>Proposed Gravity System</u>	•
Proposed Lateral System	<u>S</u>
Foundation Assessment	•
Acoustic Analysis Breadth	I
Conclusion	•
Acknowledgements & Questions	•

North Shore Equitable Build

Proposed Gravity System

<u>Slab/Pan Joist Design</u>

- Normal weight, 4000 psi concrete
- **Designed using Excel spreadsheets and hand**
- calculations
- 24.5" deep floor system


<u>Slab</u>

4.5" thick slab with #3 bars @ 12" o.c.

<u> Pan Joists</u>

- 20" depth, 7" width
- Spaced at 60" o.c.
- 2 #9 top bars & 2 #10 bottom bars

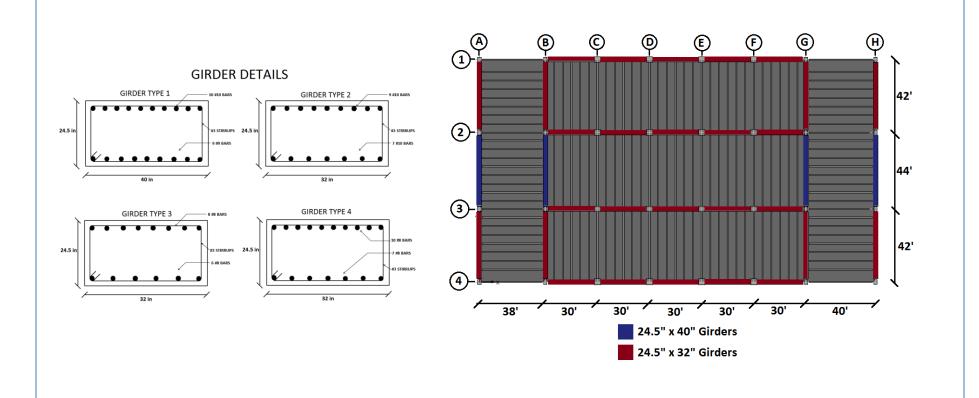
Structural Depth

- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth

Conclusion

Acknowledgements & Questions

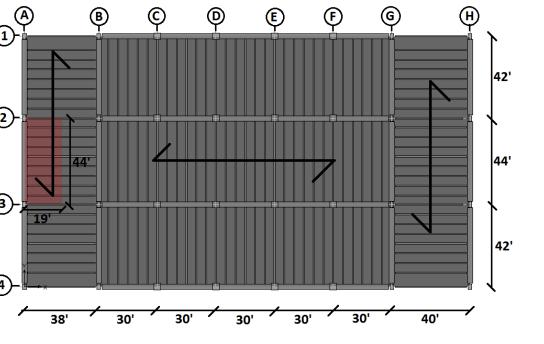


North Shore Equitable Build

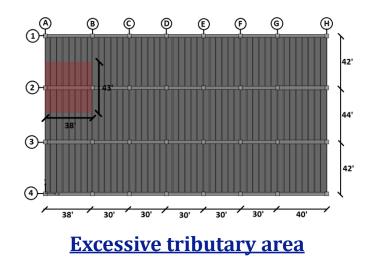
Proposed Gravity System

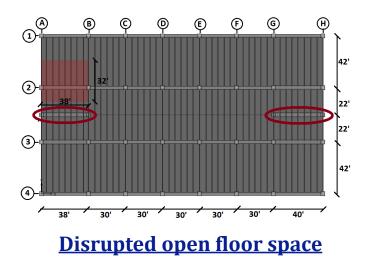
<u>Girder Design</u>

- Designed using Excel spreadsheets and hand calculations
- 24.5" x 40" Girders used for 44' spans
- 24.5" x 32" girders used for spans less than 44'
- Spans > 40' reinforced with #9 and #10 bars
- Spans < 40' reinforced with #8 bars


Building Introduction	
Existing Building Information	
Problem Statement	
Proposed Solution	
Structural Depth	(
Codes & Loads	
<u>Proposed Gravity System</u>	
Proposed Lateral System	
Foundation Assessment	
Acoustic Analysis Breadth	
Conclusion	
Acknowledgements & Questions	(4

North Shore Equitable Buildi


Proposed Gravity System


Floor System Framing Plan

<u>Floor System Framing Plan</u>

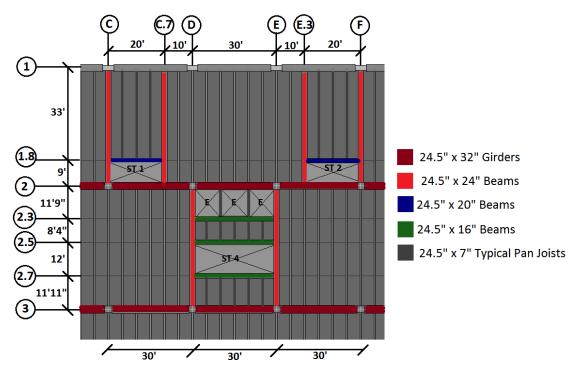
- Decreased tributary area
- No additional columns necessary

Structural Depth

- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth

Conclusion


Acknowledgements & Questions

North Shore Equitable Build

Proposed Gravity System

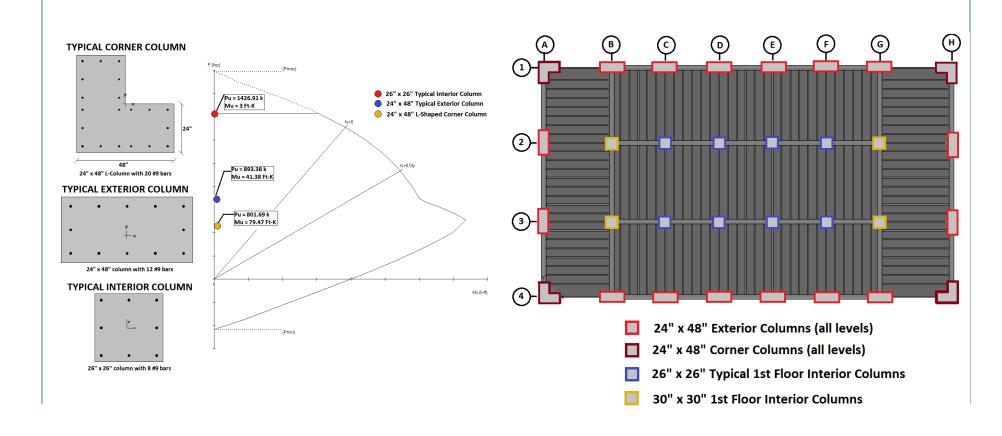
Stairwell & Elevator Shaft Framing

Stairwell & Elevator Shaft Framing

- Beam widths of 24", 20" and 16" used
- Spans range from 20' to 44'
- #6 and #8 bars used for reinforcing

Stairwell and Elevator Framing Members			
Member Size	Span	Top <u>Reinf</u> .	Bottom <u>Reinf</u> .
24.5" x 24" Beam	42' – 44'	8 #8 Bars	5 #8 Bars
24.5" x 20" Beam	20'	6 #6 Bars	4 #6 Bars
24.5" x 16" Beam	30'	4 #8 Bars	4 #8 Bars

Building Introduction		
Existing Building Information	l	
Problem Statement		
Proposed Solution		•
Structural Depth		
Codes & Loads		•
<u>Proposed Gravity System</u>		E
Proposed Lateral System		•
Foundation Assessment		•
Acoustic Analysis Breadth		T.
Conclusion		Ir
Acknowledgements & Questions		•
	I	•



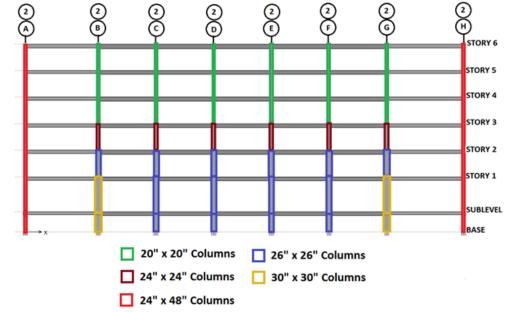
i Shore Equitable Building

Proposed Gravity System

<u>Column Design</u>

- Designed using an Excel spreadsheet and hand
- calculations
- Checked using spColumn
- Exterior Columns
- 24"x48" L-shaped columns at all corners
- 24"x48" Rectangular columns along exterior
- Interior Columns
- 30"x30" and 26"x26" square columns at 1st level
- Sizes decrease with ascending floor level

Building Introduction		
Existing Building Information	l	
Problem Statement		
Proposed Solution		•
Structural Depth		
Codes & Loads		•
<u>Proposed Gravity System</u>		E
Proposed Lateral System		•
Foundation Assessment		•
Acoustic Analysis Breadth		T.
Conclusion		Ir
Acknowledgements & Questions		•
	I	•



North Shore Equitable Buildi

Proposed Gravity System

<u>Column Design</u>

- Designed using an Excel spreadsheet and hand
- calculations
- Checked using spColumn
- **Exterior Columns**
- 24"x48" L-shaped columns at all corners
- 24"x48" Rectangular columns along exterior
- Interior Columns
- 30"x30" and 26"x26" square columns at 1st level
- Sizes decrease with ascending floor level

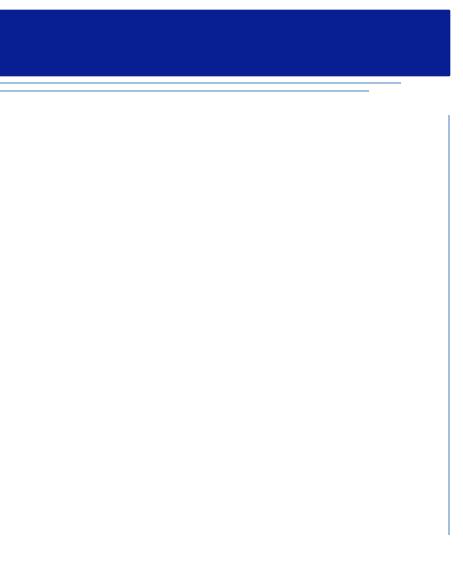
Structural Depth

- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth

Conclusion

Acknowledgements & Questions



North Shore Equitable Building

Proposed Lateral System

- Ordinary concrete moment frames
- L-shaped and rectangular columns along exterior
 - to add stiffness
- Concrete shear walls at core avoided to minimize
 - torsion

Structural Depth

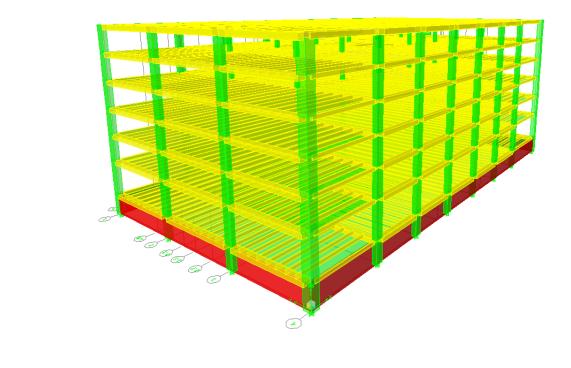
- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth

Conclusion

Acknowledgements & Questions

- Rigid Diaphragms used at all levels
- Rigid end offsets applied to all members using a
- factor of 0.5



North Shore Equitable Buildin

Proposed Lateral System

ETABS Computer Model

- Modeling Assumptions
- Building mass represented as diaphragm
- additional area mass
- Cracked moment of inertias considered

Structural Depth

- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth

Conclusion

Acknowledgements & Questions

Stephan Northrop

North Shore Equitable Building

Proposed Lateral System

Wind & Seismic Loading Application

<u>Wind Forces</u>

- Calculated using ASCE 7-05 MWFRS
- North/South direction controls due to a larger
 - exposure area

	Wind & Seismic Story Forces			
Level	E/W Wind (K)	N/S Wind (K)	Seismic	
Roof	12.94	22.67	153.11	
6	22.84	40.02	179.18	
5	22.59	<u>39.59</u>	138.89	
4	21.37	37.45	99.45	
3	19.82	34.73	63.11	
2	20.42	35.78	30.86	
1	11.73	20.56	0	
Base Shear	134.56	233.59	672.92	

Structural Depth

- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth

Conclusion

Acknowledgements & Questions

North Shore Equitable Building

Proposed Lateral System

Wind & Seismic Loading Application

Seismic Forces

- Calculated using ASCE 7-05
- Controls over wind due to building weight
- R = 3.0 for ordinary concrete moment frames
- $C_u T_a = 1.76 \text{ s}$ (controlling period)

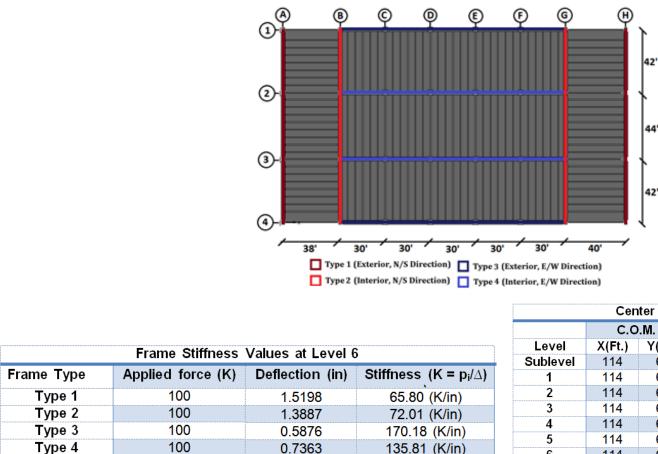
Wind & Seismic Story Forces			
Level	E/W Wind (K)	N/S Wind (K)	Seismic
Roof	12.94	22.67	153.11
6	22.84	40.02	179.18
5	22.59	39.59	138.89
4	21.37	37.45	99.45
3	19.82	34.73	63.11
2	20.42	35.78	30.86
1	11.73	20.56	0
Base Shear	134.56	233.59	672.92

Structural Depth

- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth

Conclusion


Acknowledgements & Questions

North Shore Equitable Build

Proposed Lateral System

- **<u>Relative Stiffness & Center of Rigidity</u>**
- Stiffness of moment frames range from 65.80
- (K/in) to 170.18 (K/in)
- Center of mass at center point of building
- Very little eccentricity due to symmetrical design

135.81 (K/in)

Structural Option

Type 1

Type 2 Type 3

Type 4

	Center of Mass and Rigidity											
	C.0).M.	ETABS	C.O.R.	Hand							
Level	X(Ft.)	X(Ft.) Y(Ft.)		Y(Ft.)	X(Ft.)	Y(Ft.)						
Sublevel	114	64										
1	114	64	113.14	64.27	114	64						
2	114	64	112.85	64.46	114	64						
3	114	64	112.61	64.61	114	64						
4	114	64	112.44	64.72	114	64						
5	114	64	112.31	64.79	114	64						
6	114	64	112.26	64.79	114	64						

Structural Depth

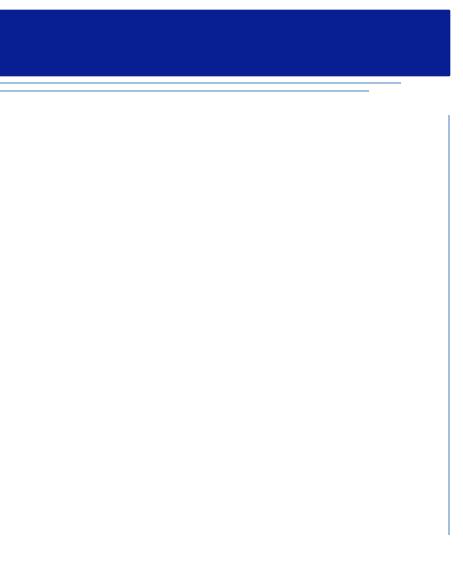
- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth

Conclusion

Acknowledgements & Questions

North Shore Equitable Building


Proposed Lateral System

Story Deflections

4	Controlling Wind Deflections									
Load cas	Load case (N/S): 1.2D + 1.6Wy + L + Lr									
Level	Deflection	Allowable Drift	Acceptable?							
	Δ _v (in)	(h _x /400)								
1	0.1899	0.5100	yes							
2	0.4590	0.9050	yes							
3	0.7462	1.3000	yes							
4	1.0058	1.6850	yes							
5	1.2120	2.0750	yes							
6	1.3626	2.4520	yes							

	Controlling Seismic Deflections									
Load cas	se (N/S):	1.2D + 1.0 Ey + L + Lr								
Level	Deflection	Allowable Drift	Acceptable?							
	Δ _v (in)	(0.02h _{sx})								
1	0.4239	4.12	yes							
2	1.0611	7.24	yes							
3	1.7868	10.36	yes							
4	2.4872	13.48	yes							
5	3.0796	16.00	yes							
6	3.5312	19.62	yes							

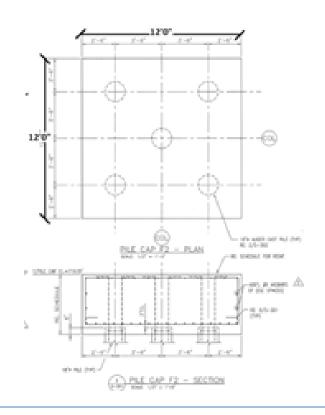
- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth Conclusion

Acknowledgements & Questions

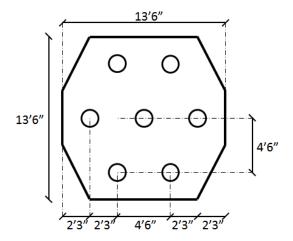
North Shore Equilable Build

Foundation Assessment


Existing System

- 18" Auger cast piles (290 K capacity)
- 5 piles per typical pile cap
- Bearing capacity = 1450 K per pile cap

<u>Redesigned System</u>


- 2000.84 K axial load per column
- 7 18" piles per pile cap

Existing Pile Cap Design

Structural Option

<u>Redesigned Pile Cap</u>

- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth

Conclusion Acknowledgements & Questions **Noise Sources under consideration**

- 95 dB subway below grade
- 71 dB passenger car at parking sublevel
- Mechanical system at roof level

<u>Target dB value at level 1 = 38 dB or less</u>

Calculations Performed

- Transmission Loss through S.O.G. and parking level
- STL comparison of new and existing roof structures •

Stephan Northrop

North Shore Equitable Build

Acoustic Analysis

Approximate existing ground level Approx. finished floor at subleve warms where and an and ------BUILDING FOUNDATION AND COLUMN LINE (TYP. 27'0" (approx) F SCALE

Redesigned System STL a	t Parkin	g Sub	level (Light F	Rail Tra	ansit)	
	0	ctave E	Band I	Freaue	encv (F	z)	
	125	250	500	1000	2000	4000	dBA
Light Rail Transit Train (dB)	102	94	90	86	87	83	95
dB reduction due to tunnel + soil	12.3	14.3	13.	14.7	15.1	15.1	13.
dB reduction due to S.O.G.	38	43	52	59	67	72	47
Perceived Noise at Parking	51.7	36.7	24.	12.3	4.9	0.0	34.
Redesigned	System	STL a	at Lev	el 1			*
dB reduction due parking level	32	30	32	38	45	49	38
Perceived Noise at Level 1	19.7	6.7	-7.4	-	-	-	-3.9

Redesigned System STL at Parking Sublevel (Passenger Car)										
	Octave Band Frequency (Hz)									
	125	250	500	1000	2000	4000	dBA			
Passenger car (at 55mph cruising speed)	70	67	66	67	66	59	71			
dB reduction due parking level CMU walls	48	42	45	56	57	66	44			
Perceived Noise at Level 1	22.0	25.0	21.0	11.0	9.0	-7.0	27.0			

- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth

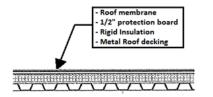
Conclusion Acknowledgements & Questions **Noise Sources under consideration**

- 95 dB subway noise at level 1
- 71 dB passenger car noise at level 1
- Mechanical noise at roof level

Calculations Performed

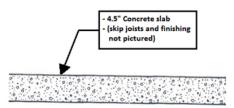
- STL at parking sublevel
- STL at Level 1
- STL comparison of new and existing roof structures

Stephan Northrop


North Shore Equitable Buildi

Acoustic Analysis

Target dB value at level 1 = 38 dB or less


Sound Transmission Loss at Roof Level									
Roof material	Octave band frequency (Hz)								
	125	250	500	1000	2000	4000	R _w (dB)		
20 gage galvanized roof deck	8	14	20	26	32	38	24		
4.5" concrete slab	38	38	41	48	57	65	47		
Improvement in noise reduction	30	24	21	22	25	27	23		

EXISTING ROOF STRUCTURE

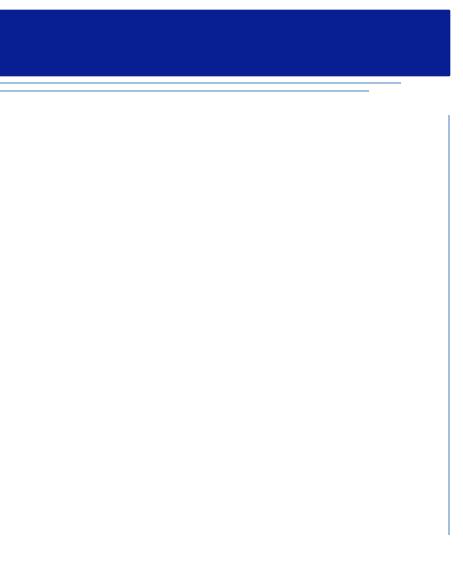
Structural Option

REDESIGNED ROOF STRUCTURE

- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth

Conclusion Acknowledgements & Questions



North Shore Equitable Buildin

Acoustic Analysis

Conclusions

- Noise transmission is not an issue in the
 - redesigned system
- Noise reduction is improved at the roof level
- Noise reduction is improved in the redesign:
 - Increase in slab thickness and density
 - Increase in building weight leads to decreased vibrations

- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

Acoustic Analysis Breadth

Conclusion

Acknowledgements & Questions

North Shore Equitable Buildi

Conclusion

- All Project Goals were achieved
- Noise control is improved
- Existing grid layout is maintained
- Additional Benefit:
- Construction cost is decreased

Drawbacks to redesigned Structure

- Excessively large column and girder sizes
- Increased building weight
- Increase construction time

Final Conclusion:

- Costs outweigh benefits
- Existing structure is the most economical

Bu	ilding Introduction
Exi	isting Building Information
Pre	oblem Statement
Pre	oposed Solution
Str	uctural Depth
•	Codes & Loads
•	Proposed Gravity System
•	Proposed Lateral System

Foundation Assessment

Acoustic Analysis Breadth

Conclusion

Acknowledgements & Questions

North Shore Equitable Buildin

Acknowledgements

<u>Primary Project Team:</u>

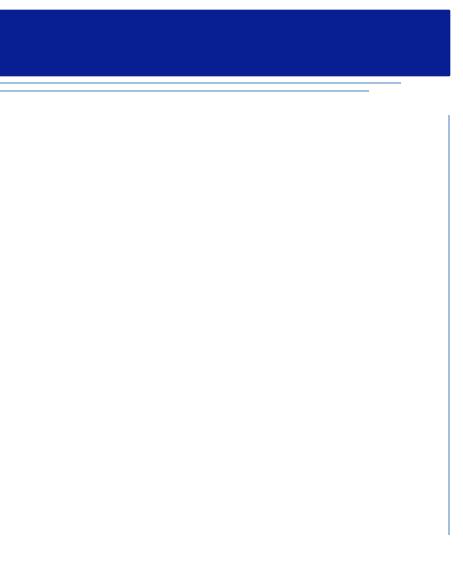
- Mike Hudec
- Robert Modany
- Dina Snider
- Ken Ash
- Louis Mittleman

The Pennsylvania State University:

- Dr. Linda Hanagan
- Prof. M Kevin Parfitt
- Prof. Robert Holland
- Ryan Solnosky, Shaun Kreidel and Dr. Andres Lepage

Continental Real-Estate

Continental Real-Estate


Strada Architects

Michael Baker

Michael Baker

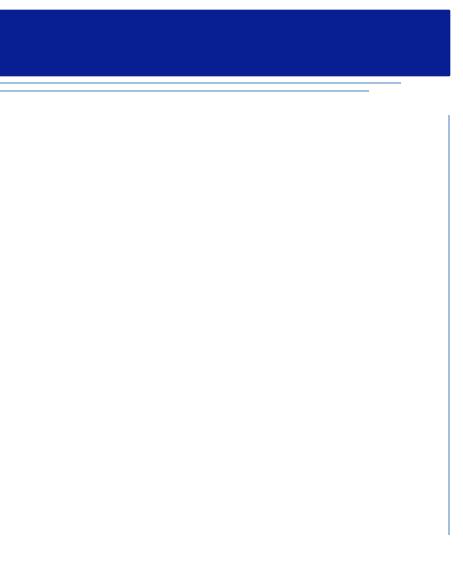
• The entire AE faculty and staff

A special thank you to my friends and family for their constant support

- Codes & Loads
- Proposed Gravity System
- Proposed Lateral System
- Foundation Assessment

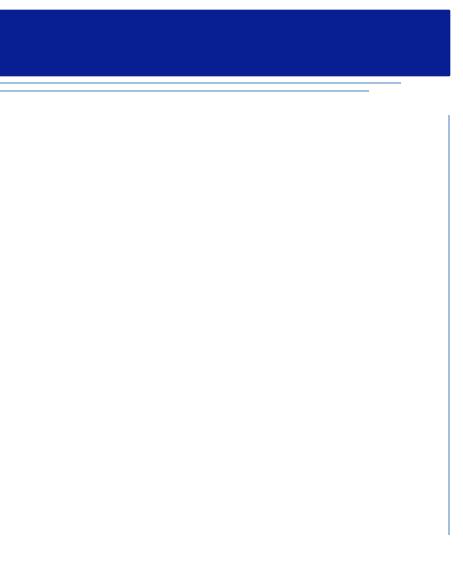
Acoustic Analysis Breadth

Conclusion

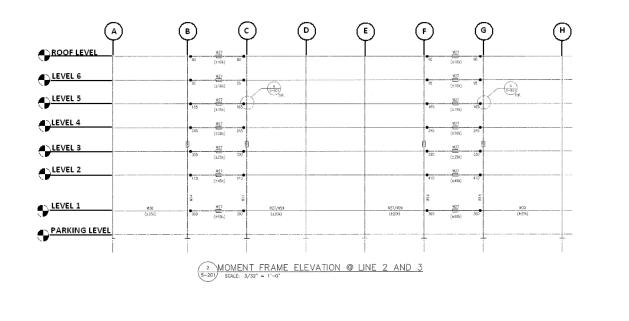

Acknowledgements & Questions

North Shore Equitable Building

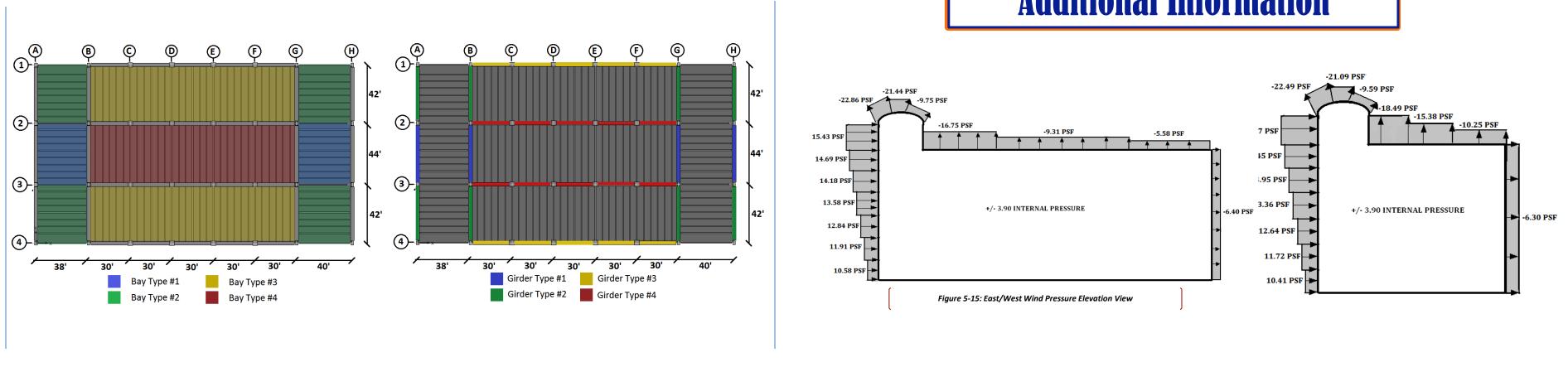
Questions & Comments



Stephan Northrop


North Shore Equitable Building

Final Thesis Presentation


North Shore Equitable Building

Additional Information

TABLE 5.5 - Dead Loads								
Load Type	As Designed (psf)	Redesign (psf)						
Superstructure Weight	5	79.58						
Roofing, Ceiling, Misc.	8	8						
Collateral Load (MEP)	7	7						
Total Roof Dead Load	20	94.58						
Concrete Floor Slab	45 (LW composite)	56.25 (NW)						
Steel/Joist Framing	10	29.16						
Ceiling, Misc.	5	5						
MEP	5	5						
Total Floor Dead Load	65	95.41						
5" Metal Studs + Insul + GWB	10	10						
4" Brick	40	40						
Total Exterior Wall Load	50	50						
Stairs	30	30						
Stair Landings	40	40						

One	One-Way Joist – 53″ pan				$f'_c = 4,000 \text{ psi}$ SIDL = 20 Slab h = 41/2" LL = 100			
Bay Size	Pan Depth	Rib Width	Beam Width	Square Column Size	Concrete	Reinforcement	Pan Area	
(ft)	(in.)	(in.)	(in.)	(in.)	(ft ³ /ft ²)	(psf)	(%)	
20 × 20	16	7	22	22	0.68	2.35	89	
20 × 25	16	7	24	24	0.67	2.43	91	
20 × 30	16	7	26	26	0.65	2.51	91	
20 × 35	16	7	32	32	0.65	2.76	91	
20 × 40	16	7	34	34	0.64	2.95	92	
25 × 25	16	7	28	28	0.68	2.60	89	
25 × 30	16	7	32	32	0.67	2.66	90	
25 × 35	16	7	34	34	0.66	3.10	90	
25 × 40	16	7	36	36	0.65	3.52	91	
30 × 30	16	7	34	34	0.67	3.03	89	
30 × 35	16	7	38	38	0.67	3.24	89	
30 × 40	16	7	40	40	0.66	3.53	90	
35 × 35	20	7	40	40	0.76	3.27	89	
35 × 40	20	7	42	42	0.74	3.48	90	
40 × 40	20	7	44	44	0.75	4.01	- 89	
45 × 45	24	7	44	44	0.82	4.10	90	
50 × 50	24	7	60	48	0.85	4.99	89	


Stephan Northrop

North Shore Equitable Buildi

Additional Information

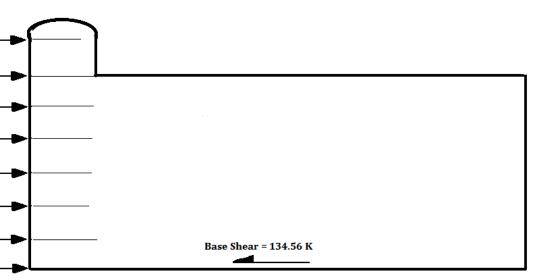
Bay Type:	1		Design Parameters			Bay T	ype 1	
	- -		slab thickness:	4.5	in	Cinden	T	
// to joists) (x-axis)	40	ft	pan size:	53	in	Girder	Type: 1	
perp to joists) (y-axis		ft	pan depth:	20	in	Interio	r Span	
Bay type:	exterior		rib width:	7	in			
Desig	n Slab		girder width:	40	in	L ⊒® 		
-			Column size:	40	in			
slab self weight =	56.25	psf	f'c =	4000	psi	Wall Load =	0.9	k/ft
joist/slab area =	2.847	ft²	Steel F _y =	60	ksi	Dead Load =	3.74	k/ft
joist/slab self weight =			conc weight =	150	pcf	Live Load =	1.60	k/ft
girder self weight =	1020.83	lb/ft	SDL =	20	psf	w _u = 1.2DL + 1.6LL =	7.05	k/ft
			LL =	80	psf	M _{uA} (interior) =	1060.42	ft.k
Dead Load =	0.07625	k/ft ²	Design P	an loists		M _{u8} (interior) =	1060.42	ft.k
Live Load =	0.08	k/ft ²				M _u ⁺ (midspan) =	729.04	ft.k
w _u = 1.2DL + 1.6LL =	0.2195	k/ft ²	Dead Load =	0.527	k/ft			
			Live Load =	0.400	k/ft	depth =	22	in
Min reinf = .0018Ag =	0.0972	in²/ft width	w _u = 1.2DL + 1.6LL =	1.273	k/ft	Required top reinf =	12.05	in²
Try #3 bars @	0 12" spa	cing	I _n =	36.67		Try 10 #10 top bars	$A_r(in^2) =$	12.7
Bar Area =	0.11	in ²			Is A _s > A _{s req} ?	Y	ES, OK	
Is A _s > A _{min} ?	У	es, ok	в		A	# of bars =	10	
I _n =	4.42	ft				d _b =	1.27	
$Mu = w_u l_n^2 / 10 =$	0.428	ft.k/ft width	M _{uA} (exterior) =	71.28	ft.k	a=Asfy/.85f'cb =	5.60	
a=Asfy/.85f'cb =	0.162	in	M _{us} (interior) =	171.08	ft.k	c = a/β ₁ =	6.59	
$\phi M_n = \phi A_s F_y(d-(a/2)) =$	1.07371	ft/k	Mu ⁺ (midspan) =	122.20	ft.k	Does Tension Control?		ES, OK
Is ØM _n > M _u ?	YE	S, OK	Design rein	forcemen	t	ε _t =	0.005	
Required top reinf =	1.92		depth =	22.25	in	Recalculated depth =	21.865	
Try 2 #10 bottom bars			Required top reinf =	1.37	in ²	$\phi M_n = \phi A_s F_{\gamma}(d \cdot (a/2)) =$		
		ES. OK	Try 2 #9 top bars	1.57 A _s (in ²)		Is ØM _n > M _u ?	YE	S, OK
Is A _s > A _{s req} ?	-					Check bar spacing		DKAY
bar diameter =	1.27	in	Is A _s > A _{s req} ?	YES,	OK	Required bot reinf =	8.28	in²
depth =	21.99	in	$\rho = A_s/bd =$	0.0128		Try 9 #9 bot bars	$A_s(in^2) =$	9
	67		a=Asfy/.85f'cb =	5.042	in	Is A _s > A _{s reg} ?	Y	ES, OK
B _{eff} =	79	67	c = a/β ₁ =	5.932	in	# of bars =	9	
	117		ε _s =(d-c)/c =	0.0083		d _b =	1	
a=Asfy/.85f'cb =	0.669	in	Does Tension Control?	YES,	ок	Check bar spacing	0	DKAY
c = a/β ₁ =	0.787	in	$\phi M_n = \phi A_s F_{\gamma}(d - (a/2)) =$	177.56	ft.k	a=A _s f _y /.85f' _c b =	3.97	
ε,=(d-c)/c =	0.0808		$Is \phi M_n > M_u$?	YES,	ок	c = a/β ₁ =	4.67	
Does Tension Control?		ES. OK		,		Does Tension Control?		ES, OK
$\phi M_n = \phi A_s F_y(d-(a/2)) =$						Recalculated depth = $\phi M_n = \phi A_s F_v (d-(a/2)) =$	22.125 815.66	
Is $\phi M_n > M_u$?	VE	S, OK						
		, OR				Is ØM _n > M _u ?	YE	S, OK

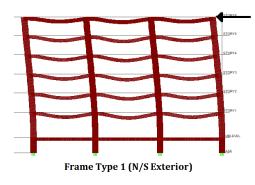
Stephan Northrop

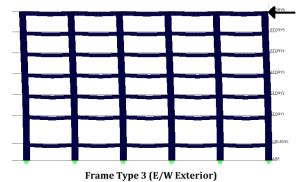
North Shore Equitable Buildi

Additional Information

	Story Wind Forces (North/South Direction)										
Level	Height	Face	Elevatio	Pressure	Story	Story Shear					
	(Ft.)	(Ft.)	(Ft.)	(psf)	(K)	(K)					
Turret	8.13	22.67	103	15.17	2.80	2.80					
Roof	6.88	228	81.75	14.45	22.67	25.47					
Level 6	12.58	228	69.17	13.95	40.02	65.49					
Level 5	13.00	228	56.17	13.36	39.59	105.08					
Level 4	13.00	228	43.17	12.64	37.45	142.53					
Level 3	13.00	228	30.17	11.72	34.73	177.26					
Level 2	15.08	228	17.17	10.41	35.78	213.03					
Level 1	8.58	228	0	10.51	20.56	233.59					

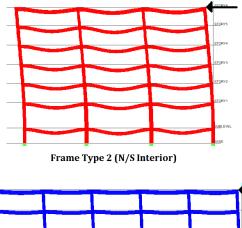

	Story Seismic Forces						
Level	Story Weight	Story Height			Story Force	Story Shear	
	w _x (K)	h _x (Ft.)	w _x h _x ^k	C _{vx}	F _x (K)	V _x (K)	
Level 1	5162.89	0.00	0.00	0.00	0.00	672.92	
Level 2	4821.02	17.17	177814.0	0.05	30.86	672.92	
level 3	4821.02	30.17	363634.6	0.09	63.11	642.06	
Level 4	4821.02	43.17	573040.0	0.15	99.45	578.95	
Level 5	4821.02	56.17	800313.3	0.21	138.89	479.51	
Level 6	4775.62	69.17	1032488.	0.27	179.18	340.61	
Roof	3300.91	81.75	882228.0	0.23	153.11	161.43	
Upper	142.54	98.01	47957.76	0.01	8.32	8.32	

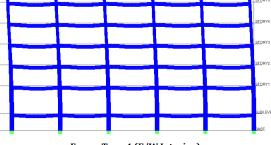




North Shore Equitable Building

Additional Information





E/W Seismic story forces

Structural Option

Frame Type 4 (E/W Interior)